(Finite) State machines
Imagine a machine that has a finite number of states il could be in at any I time to parlor a task
\Rightarrow has inputs \& outputs
\Rightarrow well de (ined states
\Rightarrow transitions from I state to the other depends on inputs \& current state
\Rightarrow outputs are determined by what state it's in
ex: build a digital controller for traffic lights

$$
\rightarrow G \rightarrow Y \rightarrow R
$$

want the transition $G \rightarrow Y$ to take a time T_{g}

$$
\begin{array}{lll}
Y \rightarrow R \\
R \rightarrow G & \quad T_{y} \\
T_{r}
\end{array}
$$

want to be able to "program" T_{g}, T_{y}, T_{r} so need 3 "timers"

en enables a count-up counter
reset sets the counter to ϕ
target is a n-bit number
done goes high when the counter = target
note: reset $=\overline{\text { ina }}$ (when not enabled, reset to ϕ)
3 done lines: G_{d}, Y_{d}, R_{d} input to $F S M$
3 eva ": Ge, Ye, Re output of FSM 3 signals to turn or the 3 lights, can use timer enc lines

we can build this out If DFFs and logic gates
start in G state

with (eedback, stays in the state
Ge asserted turns on green light and starts green timer \Rightarrow But want to go to yellow when G_{d} is asserted

now we hansition to Y state on next clock tick condition is that G_{d} is assented AND we are in G state

Y state has same feed hack circuit as G state \Rightarrow but it is turned on by y^{\prime} or feedback\& circuit

now put it all together:

Note: timer enables also tum on the lights
\Rightarrow when done is assented, the light goes ont after a single AND gate
\Rightarrow Hansition to next state happens at posedge b next clock via DFF, so cant have 2 lights on at same time!
note: need a global start ENA

Timing diag am

note that done signal is a pulse \rightarrow comes from timer, which is reset when enable signal goes away

this is called a "handshake":

1. eva assated stents courter
2. done assented when confer reaches target
3. eva deassated when done asserted
4. done reset (deasserted) when en deassated (waits!)
done doesn't have a required width since it is just used by the FSM to trigger a transition

Handshake
Often, 2 state machines "talk" to each other ex:

communication
each FSM sends signals to the other \Rightarrow need to be clear on the protocol
dx: - FSMr receives ENA from FSMZ

- FSMr then performs a task ε^{\prime} sends Door
- Fsmr waits for DONE
"Careful" handshake

1. GO starts red FSM
2. Red \rightarrow ENA state, asserts ENA signal and goes to WATTDONE state to wait fo DONE signal
3. Blue FSM sees ENA : execute tasks. When finished, go to DONE state and assent DONE signal and goes to WATRENA to wait for ENA to go away
4. Red sees DONE ascuted, goes to DROPENA state and deasserts EMt (set to ϕ) and then goes to WAITDONE state
5. Blue sees ENA deassented i goes back to wAIT state where DONE is deasserted
6. Bed sees DONE deassented \#goes back to WAIT

EvA \qquad $\uparrow_{\text {star t tasks }}$

DONE \qquad
haNDS ShAKE!
\Rightarrow Often, a signal like DONE can stay assated but have no meaning \rightarrow some what dangerous, can lead to faulty thansisdions
\Rightarrow here's how you can assure a signal like done has a finite width: "one-skot"

this assumes "done pulse" will have width 1-2 ticks
ex: done assuteted close to posedge

ex: done assented far from posedge
done

pulse \qquad
\square

